
1 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999

Interfacing the HI7188 to a Microcontroller

Introduction
The Intersil HI7188 is a monolithic eight channel 16-bit
sigma delta instrumentation A/D subsystem suitable for
applications such as Process Control and Measurement,
Industrial Weigh Scales, Motion Control and Medical Equip-
ment. The HI7188 serial I/O port is compatible with most
serial bus protocols including the Motorola 6805/11 series
SPI and Intel 8051 series SSR busses. This application note
discusses the HI7188 Serial Interface Port and details two
application circuits and pseudo code useful in demonstrating
how to interface the HI7188 to a microcontroller. For further
information review the HI7188 product data sheet, file num-
ber 4016.

HI7188 Serial Port Signals
The HI7188 Sigma-Delta A/D converter communicates to a
controlling device over either a 2-wire or 3-wire serial inter-
face. Data is transmitted or received synchronous to a port
clock. The Serial Clock (SCLK) line is the synchronous
data clock used to strobe the serial data in or out of the
HI7188 A/D converter. The serial clock can be generated
by the converter or can be supplied to the converter. When
the HI7188 is the clock master, that mode is referred to as
the Self Clocking mode. When the HI7188 is a clock slave,
that mode is referred to as the External Clocking mode.
The serial port also contains a status flag (End of Scan,
EOS) that signals a controller that the HI7188 has com-
pleted a conversion scan and the results are now available
for reading from the device. The End of Scan flag is cleared
by reading the data out of the HI7188’s Data RAM.

The Chip Select (CS) line allows multiple devices to reside
on the serial bus and each in turn to be selected individually.
The HI7188 is selected, enabling an I/O operation, whenever
the CS input is asserted low.

The HI7188 has 2 data lines that can be used with 2-wire or
3-wire serial bus interfaces. The Serial Data I/O (SDIO) line
is a bidirectional data line that can be used as a dedicated
input or a bidirectional data path. The Serial Data Out (SDO)
line is a dedicated output pin for use in 3-wire interfaces
where there must be a separate path for data in and data
out. In a 2-wire interface, such as that used with Intel micro-
controllers, the SDIO line is used exclusively for bidirectional
data transfers.

In addition to the SCLK, CS and data lines, the HI7188 has a
serial interface reset function via the IORST pin. The IORST
pin, when active low resets the serial interface state machine.
The IORST input is useful for re-synchronizing the HI7188
serial interface to the microcontroller if synchronization ever
becomes lost. Chip configuration and conversion operation is
not affected by applying an IORST to the HI7188.

HI7188 Serial Protocol
When communicating with the HI7188 a specific sequence
must be satisfied. During the first phase of a transfer an
instruction byte must be written to the device. The instruction
byte provides the HI7188 with information regarding the data
transfer in phase 2 of the communication cycle. A typical com-
munication cycle would involve an Instruction Cycle and a
Data Cycle as shown in Figure 1.

The instruction byte allows access to the following storage
elements internal to the HI7188:
Control Register
Channel Configuration Register #2
Channel Configuration Register #1
Data RAM
Offset Calibration RAM
Positive Full Scale Calibration RAM
Negative Full Scale Calibration RAM

Interfacing to RAMs Versus Registers

Accessing RAM storage is different than accessing registers
on the HI7188. The fundamental difference is that the RAM is
accessible only as a total entity, whereas the number of bytes
transferred to/from a register is contained in the IR byte.

When accessing a RAM, the internal address generator will
increment through the entire active RAM block starting at the
address location corresponding to the first logical channel
and ending with the last active logical channel. The number
of active channels is set by the CR<7:5> bits, which there-
fore determine the number of bytes transferred during a
RAM I/O access. For example, if the Offset Calibration RAM
is the source/destination and the chip is configured to con-
vert on 4 logical channels, 12 data bytes will be transferred,
since an Offset Calibration RAM word is 3 bytes. With the
same configuration, reading the Data RAM would transfer 8
bytes of data, since a Data RAM word is only 2 bytes.

Instruction Byte

The instruction byte is organized as follows:

MSB 6 5 4 3 2 1 LSB

R/W NB1 NB0 RB A3 A2 A1 A0

DATA
BYTE 1

DATA
BYTE 2

DATA
BYTE 3

DATA CYCLE

CS

SDIO

FIGURE 1. HI7188 COMMUNICATION CYCLE

INSTRUCTION
BYTE

INSTRUCTION
CYCLE

Application Note April 1996 AN9610

Authors: John Kornblum and Stephen LaJeunesse

2

R/W - Bit 7 of the Instruction Byte determines whether phase
2 of the communication cycle will be a read or write opera-
tion. If R/W is logic 1, a write transfer will occur in phase 2 of
the communication cycle. If R/W is logic 0, a read transfer
will occur in phase 2 of the communication cycle.

NB1, NB0 - Bits 6 and 5 of the Instruction Byte determine
the number of bytes that will be transferred during phase 2 of
the communication cycle if a register is selected for I/O
access. If a RAM is selected for I/O access, these bits are
ignored. Any number of bytes from 1 to 4 is allowed. See the
HI7188 Data Sheet for specific bit decodes.

RB - Bit 4 is used to determine the byte order when access-
ing a RAM address. When accessing a RAM address, if
RB = 1, the data format is most significant byte first to least
significant byte (descending). When accessing a RAM
address, if RB = 0, the data format is least significant byte
first to most significant byte (ascending). When accessing a
register address, this bit is ignored.

A3, A2, A1, A0 - Bits 3 and 2 (A3 and A2) of the Instruction
Byte determine which of the three internal registers will be
accessed or if both bits are set (11b), that a RAM access is
active. For register addresses, bits 1 and 0 (A1 and A0)
determine which byte of that register will be accessed first.
For RAM access (A3 = 1, A2 = 1), bits 1 and 0 (A1 and A0)
determine which RAM is the source or destination. See the
HI7188 data sheet for complete addressing information.

Interfacing to the 8X51 SSR Protocol

The HI7188 can interface to microcontrollers that use a 2 or
3-wire serial hardware interface. A 2-wire interface involves a
tightly coupled system where a single converter is con-
nected to a single microcontroller. In this mode only the
Serial Clock Line (SCLK) and the Bidirectional Data Line
(SDIO) are used to communicate between the A/D and the
microcontroller. Figure 2 shows a 2-wire interface to an 8X51
style microcontroller.

8051 Setup

Mode 0 of the 8X51 uses RXD (Port 3 line 0) as the data port
and TXD (Port 3 line 1) as the shift clock. Data is shifted with
LSB being the first bit in the sequence. The baud rate is fixed
to 1/12 the microcontroller oscillator frequency. The 8X51 is
the serial shift clock master, therefore the HI7188 is placed
in external clocking mode by grounding the MODE pin. The
HI7188 can be setup in polled mode where the status of the
EOS line is read into the 8X51. When EOS is low, the
HI7188 is ready to be accessed. In a multi-converter applica-
tion the CS line can be used to address each individual A/D
in the system. In a single converter application the CS may
be grounded and an access is started by writing the instruc-
tion byte. The HI7188 should be reset to ensure proper
power-up state. On power-up the HI7188 is configured for
MSB first transfers and descending byte mode.

Since the 8X51 Intel Microcontrollers use an ascending or lit-
tle endian data structure, the HI7188 should be programmed
for LSB first and ascending byte mode. Ascending byte
mode will sequence through multiple bytes from least signifi-
cant byte to most significant byte. The HI7188 expects data
to be valid for the rising edge of the shift clock and changed

TABLE 2. INTERNAL DATA ACCESS DECODE
STARTING BYTE

RB A3 A2 A1 A0 DESCRIPTION

x 0 0 0 0 Control Register Byte0

x 0 0 0 1 Control Register Byte1

x 1 0 0 0 CCR #2 Byte0

x 1 0 0 1 CCR #2 Byte1

x 1 0 1 0 CCR #2 Byte2

x 1 0 1 1 CCR #2 Byte 3

x 0 1 0 0 CCR #1 Byte0

x 0 1 0 1 CCR #1 Byte1

x 0 1 1 0 CCR #1 Byte2

x 0 1 1 1 CCR #1 Byte3

0 1 1 0 0 Data RAM, least significant byte first,
READ ONLY

1 1 1 0 0 Data RAM, most significant byte first,
READ ONLY

0 1 1 0 1 Offset Calibration RAM, least significant
byte first

1 1 1 0 1 Offset Calibration RAM, most significant
byte first

0 1 1 1 0 Positive Gain Calibration RAM, least
significant byte first

1 1 1 1 0 Positive Gain Calibration RAM, most
significant byte first

0 1 1 1 1 Negative Gain Calibration RAM, least
significant byte first

1 1 1 1 1 Negative Gain Calibration RAM, most
significant byte first

TABLE 2. INTERNAL DATA ACCESS DECODE
STARTING BYTE (Continued)

RB A3 A2 A1 A0 DESCRIPTION

PB3.1

PB3.0

P1.0

2-WIRE INTERFACE

EOS

SCLK

SDATAI/O

HI7188

8X51

P1.2CS

IORST

MODE

+5V

FIGURE 2. HI7188 INTERFACE TO 8X51

P1.1CA

Application Note 9610

3

on the falling edge of the shift clock. The 8X51 microcontrol-
ler expects just the opposite, so an inverter can be used on
the serial clock line if the user wants to maintain approxi-
mately 1/2 clock cycle setup and hold times at the HI7188.
Eliminating the inverter would give approximately a full clock
cycle of setup time and zero hold time. The HI7188 will work
in either design. Figure 3 shows the HI7188 port timing.

Programming the HI7188 with the 8X51

The serial port of the 8X51 and the HI7188 need to be con-
figured after power-up or a hardware reset. The HI7188 Con-
trol Register must be set to comply with the 8X51 data
format. Also, the Control Register is written to configure
other aspects of the HI7188, such as number of channels to
convert on, enabling the line noise rejection function, etc.
The following program initializes the 8X51 serial port and
HI7188. Data is read in a polled fashion instead of interrupt
driven.

8X51Microcode Example
;Power-up/Reset, Port initialization
;Set-Up Port 1 for reading status bits
;Polled Data, (No interrupts)
;Set P1.0 for End of Scan (EOS)
;Set P1.1 for Calibration Active (CA)
;Set P1.2 for Chip Select (CS)
SSRINIT: SCON, #0000 0000B;

SETB 93H; Configure Port 1
CLRB P3.1; Deassert Clock Line
CLRB P1.2: CS Active
MOV R2,#001H; EOS Mask Value
MOV R3,#002H; CA Mask Value

;SSR Clock Subroutine runs the serial clock.
;Inactive high and asserted low with inverter on SCLK
SSRCLK MOV R4, #008H: Reset Clock Count
CLKLOOP SETB P3.1; Assert Clock Line

DEC R4; Decrement Clock Count
CLRB P3.1; Deassert Clock Line
JNZ CLKLOOP; Another clock if not finished
RET

;Configure the HI7188 for:

;Ascending byte direction, LSB first
;Convert on 8 logical channels
;Suppress EOS during calibration
;Enable 60 Hz line noise rejection
Note: HI7188 expects MSB first format until after ADINIT is
complete.
ADINIT: MOV SBUF, # 10000101; IR byte for CR

CALL SSRCLK; Serial Clock
MOV SBUF, # 00110000; Write CR<15:8>
CALL SSRCLK; Serial Clock
MOV SBUF, # 01100111; Write CR<7:0>
CALL SSRCLK; Serial Clock

;Write Channel Configuration Registers for:
;8 unique physical channels,
;Offset Calibration Mode, gain of 1.
OFFCAL MOV SBUF, #11101000; IR byte for CCR#2

CALL SSRCLK; Serial Clock
MOV SBUF, #01110100; logical channel 4
CALL SSRCLK; Serial Clock
MOV SBUF, #01010100; logical channel 3
CALL SSRCLK; Serial Clock
MOV SBUF, #00110100; logical channel 2
CALL SSRCLK; Serial Clock
MOV SBUF, #00010100; logical channel 1
CALL SSRCLK; Serial Clock
MOV SBUF, #11100100; IR byte for CCR#1
CALL SSRCLK; Serial Clock
MOV SBUF, #11110100; logical channel 8
CALL SSRCLK; Serial Clock
MOV SBUF, #11010100; logical channel 7
CALL SSRCLK; Serial Clock
MOV SBUF, #10110100; logical channel 6
CALL SSRCLK; Serial Clock
MOV SBUF, #10010100; logical channel 5
CALL SSRCLK; Serial Clock

;Test Calibrate Active output. If low, offset calibration is
;complete for all 8 channels, jump to POSCAL code
;segment
OCAL_DN MOV A,P1;

ANL A,R3;
JZ POSCAL;
SJMP OCAL_DN;

;Write Channel Configuration Registers as
;before except write mode bits for positive
;full scale calibration.
POSCAL MOV SBUF, #11101000; IR byte for CCR#2

CALL SSRCLK; Serial Clock
MOV SBUF, #01111000; logical channel 4
CALL SSRCLK; Serial Clock
MOV SBUF, #01011000; logical channel 3
CALL SSRCLK; Serial Clock
MOV SBUF, #00111000; logical channel 2
CALL SSRCLK; Serial Clock
MOV SBUF, #00011000; logical channel 1
CALL SSRCLK; Serial Clock
MOV SBUF, #11100100; IR byte for CCR#1
CALL SSRCLK; Serial Clock
MOV SBUF, #11111000; logical channel 8
CALL SSRCLK; Serial Clock

LSB D1 D2 D3 D4 D5 D6 D7

LSB D1 D2 D3 D4 D5 D6 D7

FIGURE 3A. DATA SEND/WRITE HI7188

FIGURE 3B. DATA RECEIVE/READ HI7188

TXD

RXD

TXD

RXD

SCLK

SCLK

SDATAI/O

SDATAI/O

HI71888051

HI71888051

CS

CS

P1.1

P1.1

FIGURE 3. HI7188 SERIAL PORT TIMING

Application Note 9610

4

MOV SBUF, #11011000; logical channel 7
CALL SSRCLK; Serial Clock
MOV SBUF, #10111000; logical channel 6
CALL SSRCLK; Serial Clock
MOV SBUF, #10011000; logical channel 5
CALL SSRCLK; Serial Clock

;Test Calibrate Active output. If low, positive gain calibration
;is complete for all 8 channels, jump to NEGCAL code
;segment
PCAL_DN MOV A,P1;

ANL A,R3;
JZ NEGCAL;
SJMP PCAL_DN;

;Write Channel Configuration Registers as
;before except write mode bits for negative
;full scale calibration.
NEGCAL MOV SBUF, #11101000; IR byte for CCR#2

CALL SSRCLK; Serial Clock
MOV SBUF, #01111100; logical channel 4
CALL SSRCLK; Serial Clock
MOV SBUF, #01011100; logical channel 3
CALL SSRCLK; Serial Clock
MOV SBUF, #00111100; logical channel 2
CALL SSRCLK; Serial Clock
MOV SBUF, #00011100; logical channel 1
CALL SSRCLK; Serial Clock
MOV SBUF, #11100100; IR byte for CCR#1
CALL SSRCLK; Serial Clock
MOV SBUF, #11111100; logical channel 8
CALL SSRCLK; Serial Clock
MOV SBUF, #11011100; logical channel 7
CALL SSRCLK; Serial Clock
MOV SBUF, #10111100; logical channel 6
CALL SSRCLK; Serial Clock
MOV SBUF, #10011100; logical channel 5
CALL SSRCLK; Serial Clock

;Test Calibrate Active output. If low, negative gain calibration
;is complete for all 8 channels completing full calibration
;of the HI7188.
POL_N_DNMOV A,P1;

ANL A,R3;
JZ CALDONE;
SJMP POL_N_DN;

CALDONE NOP

;Poll EOS Signal for End of Scan and read 8 words of data.
ADRUN: MOV R1, #007H;

MOV R0, START_ADDRESS;
MOV R5, DATA_STREAM_SIZE;

POLL_EOS MOV A, P1;
ANL A,R2;
JZ READ_DATA;
SJMP POLL_EOS;

READ_DATA SETB P1.0;
MOV SBUF,#00001100;IR data RAM read
CALL SSRCLK; Serial Clock

DATA_LOOP MOV A,SBUF;
MOV @R0, A;
INC R0;
DEC R1;
JZ DATA_LOOP;

DEC R5;
JZ FINISHED;
SJMP POLL_EOS;
RET;

The initialization routine (SSRINIT) configures the Serial
Port in Mode 0 operation where the shift clock is generated
by the SSRCLK subroutine under Program Control. The
baud rate should not exceed the HI7188’s specification of
5Mbps. Port 1 bit 2 is the control bit for Chip Select that
enables the HI7188’s serial port.

The SSRCLK module generates 8 low to high edges on the
HI7188 SCLK line. For this example, it is intended that the
HI7188 SCLK stall high between byte transfers. This is true if
the inverter shown in Figure 2 is included.

The ADINIT module configures the HI7188 operating mode.
After a power-up the HI7188’s Control Register is initialized
for conversion on one logical channel, line noise filtering off,
chopper stabilizer circuitry enabled, and offset binary data
coding. The byte sequencing on port accesses is descend-
ing (2..1..0), the MSB is the first bit shifted in serial transfer
and the serial data out line is disabled. The ADINIT module
changes the byte sequencing to ascending where the least
significant byte is sent first (0.. 1.. 2) to match the Intel little
endian data structure. The shift order is also changed from
the MSB first to the LSB first in the serial transfer. In addition,
the module configures the HI7188 to convert on 8 logical
channels with line noise rejection filtering enabled and the
EOS interrupt is suppressed during calibration. Please note
that the HI7188 does not recognize the switch from MSB to
LSB bit positioning until after the lower Control Register byte
CR<7:0> write is complete. For this reason the instruction
byte and data bytes shown in this module are written in
reverse order.

The OFFCAL module writes the CCR registers, thereby pro-
gramming the HI7188 physical channel information. The phys-
ical channel configuration is ordered such that the first logical
channel converted uses the physical channel 1 inputs, the
second logical uses the physical channel 2 inputs, etc. All
channels are programmed for bipolar input levels, offset cali-
bration mode and a gain of 1.

The OCAL_DN module checks for the Calibrate Active (CA)
pin to be inactive (logic 0). When CA is inactive, offset cali-
bration is complete and the POSCAL module is invoked.

The POSCAL module is similar to the OFFCAL module in
that it writes the CCR registers, this time changing the oper-
ating mode to positive full scale calibration while maintaining
the other physical to logical channel relationships. Again, the
code monitors the CA pin and jumps to the NEGCAL module
when CA is inactive. CA inactive indicates the positive gain
calibration is complete for all channels.

The NEGCAL module writes the operating mode for each
channel to negative full scale calibration while maintaining
the other physical to logical channel relationships as written
in OFFCAL and POSCAL. When the CA output is detected
low, negative gain calibration is complete. This completes
the HI7188 calibration sequence.

The CA signal is used to indicate that calibration is complete for

Application Note 9610

5

all channels. The EOS output could have been used because
the suppress EOS during calibration bit was set. A down side to
using EOS in the above example is that a data RAM read would
have to occur to deassert the end of scan interrupt.

If the suppress EOS bit is not set, the EOS signal cannot reli-
ably be used to indicate that calibration is complete. This is
due to the inherent asynchronosity between the converter and
the serial interface. For example, for a given 8-channel con-
version scan, assume that the HI7188 has completed conver-
sions on the first three logical channels when the user
programs logical channel 1 for calibration. The EOS output
will still go active at the end of the current channel scan, but
the first logical channel has not been calibrated. It gets cali-
brated on the ensuing channel scan. Generally, if the user
intends to calibrate on some channels while converting oth-
ers, the EOS signal should not be suppressed and the CA pin
can be used to indicate when calibration is complete. The
order of which the CCR registers is written is inconsequential.
What is important is that the analog input for the channel(s)
being calibrated is setup before the CCR write occurs.

The ADRUN module initializes the byte count for data transfers
into the R1 register, while the starting address for the incoming
data storage is set as well as the data buffer size. R2 is set with
the mask value for the EOS flag which can be read or Port 1 bit 0.

The POLL_EOS module checks the status of the EOS flag
from the HI7188 A/D converter, upon detecting EOS being
low the READ_DATA module is called.

The READ_DATA module will assert the CS signal for the
HI7188 serial port low and write the instruction byte to the
A/D. Sixteen bytes (2 bytes/channel) of data will be read
from the A/D which comprises the entire conversion data
for the entire scan. If the data buffer is full the routine will
return to the main calling routine.

Interfacing to the SPI Bus Protocol

The Serial Peripheral Interface (SPI Bus) is a serial bus using
a 3-wire hardware interface. The three lines used to transfer
data from one device to the other are the Serial Clock (SCK)
line, the Master In Slave Out (MISO) data line and the Master
Out Slave In (MOSI) data line. Data is shifted MSB first, and
byte sequencing is in descending order (2.. 1..0). The clock is
typically inactive low. Port D, line 4 is used as SCK. The shift
clock is generated by the bus master which can be either a
microcontroller or a peripheral. Data is routed either to PD2
(Master In Slave Out) or PD3 (Master Out Slave In) depending
on software initialization. The Slave Select (SS) line deter-
mines if the 68HC11 microcontroller is a Master or Slave on
the SPI Bus.

The Serial Peripheral Data I/O register in the microcontroller
initiates transmission/reception of a byte. The SPI port on
the microcontroller is configured using the Serial Peripheral
Control Register. Many devices contain SPI ports, such as
the 6805 and 6802, but this discussion will center on the
68HC11. When connecting an HI7188 Sigma-Delta A/D
Converter to the SPI Port of the 68HC11, the user has many
configuration options available. The serial clock generation
can be generated by the HI7188 using Self Clocking mode

or by the 68HC11. In Figure 4 the HI7188 is configured as
the clock master for the SPI port. This is accomplished by
pulling the HI7188 MODE pin high (‘1’) and grounding the
68HC11 Slave Select (SS) pin of the microcontroller. Con-
versely, if the microcontroller was to be the clock master then
the SS line would be tied high and the MODE pin grounded.
The EOS line of the A/D converter can be monitored via an
interrupt scheme or by using simple polling. The program-
ming example uses a polled status scheme.

Programming the HI7188 with the 68HC11
The serial ports of the HI7188 A/D converter and the
68HC11 must be configured after power-up or a hardware
reset. The SPINIT module configures the SPI Control Regis-
ter as follows: 1) no interrupt, 2) system enable, 3) normal
CMOS outputs, 4) slave mode, 5) SCK idle hi, 6) clock phase
hi and 7) clock divider = 2.

68HC11 Microcode Example

*Configuration of the SPI Control Register in no
*interrupt, system enable, normal CMOS outputs,
*slave mode, SCK idle hi, clock phase hi, clock divider = 2.
SPINIT CLRA

LDAA #%x1xx xxxxBit 6 Port D drives CS
STAA PORTD CS inactive
LDAA #$4C Init Serial Port
STAA SPCR Load SPI Control Reg
LDAA SPDR Read to clear port

*SPI Port Load/Write Subroutine called when writing data or
*control out to the HI7188 Serial Port. The SPI Port operates
*automatically once loaded with data.
SPILOAD STAA SPDR Load SPI Data Reg
IRWAIT LDAA SPSR Check Port Status

BPL IRWAIT Wait for port to Empty
RET Return from Subroutine

*SPI Port Read Subroutine called to capture data from the

PD.4 (SCK)

PD.2 (MISO)

PD.7

3-WIRE INTERFACE

EOS

SCLK

SDATAI/O

HI7188

68HC11

PD.6CS

IORST

MODE

+5V

PD.3 (MOSI)SDATAOUT

PD.5 (SS)

FIGURE 4. HI7188 INTERFACE TO 68HC11

Application Note 9610

6

HI7188.
SPIREAD LDAA SPSR Check Port Status

BPL SPIREAD Wait for Port Ready
STAA SPDR Read SPI Data Reg
RET Return from Subroutine

*Initialize the HI7188 Control Register, Convert on 8 logical
*channels, line noise rejection enabled, Descending
*Byte direction, MSB First, Serial Data Out Enabled.
IRCR LDAA #%x0xx xxxxBit 6 Port D drives CS

STAA PORTD CS active
LDAA #$A1 Instruction Byte
CALL SPILOAD Call SPI Load Subroutine
LDAB #$01 Set Number of Bytes
LDAA #$04 Write CR<15:8>
CALL SPILOAD Call SPI Load Subroutine
LDAA #$E0 Write CR<7:0>
CALL SPILOAD Call SPI Load Subroutine
JMP IRCCR2

* Write the CCR2 register to configure the first four logical
* channels for physical channel ID and operating modes.
* Write 4 bytes.
IRCCR2 LDY DATAPTR Buff Pointer for cal data

LDAA #$FB Instruction Byte
CALL SPILOAD Call SPI Load Subroutine
LDAB #$03 Set Number of Bytes

CCR2 LDA A,DATAPTR Write CCR2 byte
CALL SPILOAD Call SPI Load Subroutine
DECB Decrement Pointer
CMPB #$00 Compare B to 0
BEQ IRCCR1
INCY Increment Data Buffer Ptr
JMP CCR2

* Write the CCR1 register to configure the final four logical
* channels for physical channel ID and operating modes.
* Write 4 bytes.
IRCCR1 LDAA #$F7 Instruction Byte

CALL SPILOAD Call SPI Load Subroutine
LDAB #$03 Set Number of Bytes

CCR1 LDA A,DATAPTR Write CCR1 byte
CALL SPILOAD Call SPI Load Subroutine
DECB Decrement Pointer
CMPB #$00 Compare B to 0
BEQ IROFF
INCY Increment Data Buffer Ptr
JMP CCR1

* Write Offset Calibration Coefficients.
* HI7188 configured for converting on 8 logical channels,
* therefore a single IR requires 24 bytes of data to be written.
* Three bytes per logical channel.
IROFF LDAA #$9D Instruction Byte

CALL SPILOAD Call SPI Load Subroutine
LDAB #$23 Set Number of Bytes

OFFCAL LDA A,DATAPTR Offset Cal Data Byte
CALL SPILOAD Call SPI Load Subroutine
DECB Decrement Pointer
CMPB #$00 Compare B to 0
BEQ IRPOS
INCY Increment Data Buffer Ptr
JMP OFFCAL

* Write Positive Gain Calibration Coefficients:
* HI7188 configured for converting on 8 logical channels,
* therefore a single IR requires 24 bytes of data to be written.
* Three bytes per logical channel.
IRPOS LDAA #$9E Instruction Byte

CALL SPILOAD Call SPI Load Subroutine
LDAB #$23 Set Number of Bytes

POSCAL LDA A,DATAPTR Positive Cal Data Byte
CALL SPILOAD Call SPI Load Subroutine
DECB Decrement Reg Pointer
CMPB #$00 Compare B to 0
BEQ IRNEG
INCY Increment Data Buffer Ptr
JMP POSCAL

* Write Negative Gain Calibration Coefficients.
* HI7188 configured for converting on 8 logical channels,
* therefore a single IR requires 24 bytes of data to be written.
* Three bytes per logical channel.
IRNEG LDAA #$9F Instruction Byte

CALL SPILOAD Call SPI Load Subroutine
LDAB #$23 Set Number of Bytes

NEGCAL LDA A,DATAPTR Negative Cal Data Byte
CALL SPILOAD Call SPI Load Subroutine
DECB Decrement Pointer
CMPB #$00 Compare B to 0
BEQ ADRUN Go to A/D Run
INCY Increment Data Buffer Ptr
JMP NEGCAL

*The HI7188 is now fully configured and converting analog
* inputs.

*This Subroutine will collect data from the HI7188
*Sigma-Delta Converter, Poll EOS Signal for Data
*Ready. When ready, write instruction byte and read 16
*data bytes.
IRCR LDAA #%x0xx xxxxBit 6 Port D drives CS

STAA PORTD CS active
ADRUN LDY STRT_ADD Data Buffer Pointer

LDX BUFF_SIZE Data Buffer Size
EOS LDAA PORTD Poll End of Scan

ANDA EOSMASK 80H for Port D MSB
BNE EOS EOS Cleared?

RD_DATA LDAA #$1C Instruction Byte
CALL SPIREAD Call SPI Read Subroutine
STAA STRT_ADD Store in Memory
INCY
CMPY BUFF_SIZE Test Byte Counter
BNE RD_DATA Read another byte
LDAA #%x1xx xxxxBit 6 Port D drives CS
STAA PORTD CS inactive
RTS Done Return from

subroutine

In the example above, after completing the Control Register
write, the channel configuration data and the calibration coeffi-
cients are downloaded to the HI7188 from a contiguous mem-
ory buffer that uses DATAPTR as the handle for the beginning
of the buffer. The data is arranged (for logical channels 1 to 8)
in order: physical channel configuration, offset calibration
coefficients, positive full scale coefficients and negative full

Application Note 9610

7

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

scale coefficients. Although the calibration coefficients were
originally generated by the HI7188 in a system calibration pro-
cedure, the coefficients are downloaded in this example to
demonstrate how to configure the HI7188 without performing
a system calibration. This is useful in applications where cali-
bration procedures are maintained by a regulatory body such
as for weight scales where calibration must be certified and
only done at select times. The routines to load the configura-
tion and the calibration coefficients retrieve a byte from the
memory pointer (DATAPTR) and load them into the HI7188
via subroutine SPILOAD. Each successive routine increments
through the buffer until the memory is exhausted and the
HI7188 is fully configured and calibrated.

The IRCR module configures the HI7188 chip level operating
conditions by writing to the HI7188 Control Register. After a
power-up the HI7188’s Control Register is initialized for conver-
sion on one logical channel, line noise filtering off, chopper stabi-
lizer circuitry enabled and offset binary data coding. The byte
sequencing on port accesses is descending (2..1..0), the MSB
first bit positioning and the serial data out line is disabled. The
IRCR module configures the HI7188 for conversion on 8 logical
channels with 60Hz line noise rejection filtering enabled. The I/O
configuration maintains MSB first bit positioning and descending
byte order but is configured for three wire interface. The IRCR
module jumps to the IRCCR2 module when complete.

The IRCCR2 and CCR2 modules together perform a single
communication cycle which writes 4 data bytes to the CCR#2
Register. The CCR#2 Register contents describe the physical
channel operating conditions for the first 4 logical channels to
be converted. The CCR2 module jumps to the IRCCR1 mod-
ule after the 4 data bytes have been written.

The IRCCR1 and CCR1 modules together perform a single
communication cycle which writes 4 data bytes to the
CCR#1 Register. The CCR#1 Register contents describe
the physical channel operating conditions for the last 4 logi-
cal channels to be converted. The CCR1 module jumps to
the IROFF module after the 4 data bytes have been written.

The IROFF and OFFCAL modules together perform a single
communication cycle write to the Offset Calibration RAM.
Since the HI7188 is configured for conversion on 8 logical
channels, 24 data bytes are written after the single instruc-
tion byte. During this communication cycle the HI7188 is not
converting analog inputs because I/O access to the calibra-
tion RAMs take precedence over the converters need for the
coefficients. When this I/O access is complete, conversion
automatically restarts. The OFFCAL module jumps to the
IRPOS module after the 24 data bytes have been written.

The IRPOS and POSCAL modules together perform a single
communication cycle write to the Positive Gain Calibration
RAM. Since the HI7188 is configured for conversion on 8 logi-
cal channels, 24 data bytes are written after the single instruc-
tion byte. During this communication cycle the HI7188 is not
converting analog inputs because I/O access to the calibration
RAMs take precedence over the converters need for the coef-
ficients. When this I/O access is complete, conversion auto-
matically restarts. The POSCAL module jumps to the IRNEG
module after the 24 data bytes have been written.

The IRNEG and NEGCAL modules together perform a single
communication cycle write to the Negative Gain Calibration
RAM. Since the HI7188 is configured for conversion on 8 logi-
cal channels, 24 data bytes are written after the single instruc-
tion byte. During this communication cycle the HI7188 is not
converting analog inputs because I/O access to the calibration
RAMs take precedence over the converters need for the coef-
ficients. When this I/O access is complete conversion auto-
matically restarts. The NEGCAL module jumps to the ADRUN
module after the 24 data bytes have been written.

The ADRUN module polls the HI7188 EOS output and reads
the conversion results after EOS is activated low. Finally, the
CS line is de-asserted.

Conclusion

This application note has described two typical application
circuits with microcode segment examples.

The first circuit is designed with the 8X51 microcontroller(s) in
a configuration such that the 8x51 is the clock master in a two
line interface and data transfers are LSB to MSB format. The
pseudo code configured the part for converting on 8 logical
channels with line noise rejection filtering enabled. 8 unique
physical channels were converted, all with a gain of 1, all with
bipolar inputs. In addition, the code demonstrated full system
calibration requirements and a data RAM read for 8 channels.

The second circuit is designed with the 68HCxx microcon-
troller(s) in a configuration such that the HI7188 is the clock
master in a three line interface and data transfers are MSB
to LSB format. The pseudo code configured the part for
converting on 8 logical channels with line noise rejection fil-
tering enabled. This code segment demonstrated writing the
calibration coefficients instead of programming the part to
perform system calibration. Finally, the code completed a
data RAM read for the 8 logical channels.

Application Note 9610

